-- | -- Module : Basement.Compat.Bifunctor -- License : BSD-style -- Maintainer : Vincent Hanquez <[email protected]> -- Stability : experimental -- Portability : portable -- -- A bifunctor is a type constructor that takes -- two type arguments and is a functor in /both/ arguments. That -- is, unlike with 'Functor', a type constructor such as 'Either' -- does not need to be partially applied for a 'Bifunctor' -- instance, and the methods in this class permit mapping -- functions over the 'Left' value or the 'Right' value, -- or both at the same time. -- -- Formally, the class 'Bifunctor' represents a bifunctor -- from @Hask@ -> @Hask@. -- -- Intuitively it is a bifunctor where both the first and second -- arguments are covariant. -- -- You can define a 'Bifunctor' by either defining 'bimap' or by -- defining both 'first' and 'second'. -- {-# LANGUAGE CPP #-} module Basement.Compat.Bifunctor ( Bifunctor(..) ) where #if MIN_VERSION_base(4,8,0) import Data.Bifunctor (Bifunctor(..)) #else import Control.Applicative ( Const(..) ) import GHC.Generics ( K1(..) ) import qualified Prelude as P class Bifunctor p where {-# MINIMAL bimap | first, second #-} -- | Map over both arguments at the same time. -- -- @'bimap' f g ≡ 'first' f '.' 'second' g@ -- -- ==== __Examples__ -- -- >>> bimap toUpper (+1) ('j', 3) -- ('J',4) -- -- >>> bimap toUpper (+1) (Left 'j') -- Left 'J' -- -- >>> bimap toUpper (+1) (Right 3) -- Right 4 bimap :: (a -> b) -> (c -> d) -> p a c -> p b d bimap f g = first f P.. second g -- | Map covariantly over the first argument. -- -- @'first' f ≡ 'bimap' f 'id'@ -- -- ==== __Examples__ -- -- >>> first toUpper ('j', 3) -- ('J',3) -- -- >>> first toUpper (Left 'j') -- Left 'J' first :: (a -> b) -> p a c -> p b c first f = bimap f P.id -- | Map covariantly over the second argument. -- -- @'second' ≡ 'bimap' 'id'@ -- -- ==== __Examples__ -- >>> second (+1) ('j', 3) -- ('j',4) -- -- >>> second (+1) (Right 3) -- Right 4 second :: (b -> c) -> p a b -> p a c second = bimap P.id instance Bifunctor (,) where bimap f g ~(a, b) = (f a, g b) instance Bifunctor ((,,) x1) where bimap f g ~(x1, a, b) = (x1, f a, g b) instance Bifunctor ((,,,) x1 x2) where bimap f g ~(x1, x2, a, b) = (x1, x2, f a, g b) instance Bifunctor ((,,,,) x1 x2 x3) where bimap f g ~(x1, x2, x3, a, b) = (x1, x2, x3, f a, g b) instance Bifunctor ((,,,,,) x1 x2 x3 x4) where bimap f g ~(x1, x2, x3, x4, a, b) = (x1, x2, x3, x4, f a, g b) instance Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) where bimap f g ~(x1, x2, x3, x4, x5, a, b) = (x1, x2, x3, x4, x5, f a, g b) instance Bifunctor P.Either where bimap f _ (P.Left a) = P.Left (f a) bimap _ g (P.Right b) = P.Right (g b) instance Bifunctor Const where bimap f _ (Const a) = Const (f a) instance Bifunctor (K1 i) where bimap f _ (K1 c) = K1 (f c) #endif