{-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE TypeOperators #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Foldable -- Copyright : Ross Paterson 2005 -- License : BSD-style (see the LICENSE file in the distribution) -- -- Maintainer : [email protected] -- Stability : experimental -- Portability : portable -- -- Class of data structures that can be folded to a summary value. -- ----------------------------------------------------------------------------- module Data.Foldable ( Foldable(..), -- * Special biased folds foldrM, foldlM, -- * Folding actions -- ** Applicative actions traverse_, for_, sequenceA_, asum, -- ** Monadic actions mapM_, forM_, sequence_, msum, -- * Specialized folds concat, concatMap, and, or, any, all, maximumBy, minimumBy, -- * Searches notElem, find ) where import Data.Bool import Data.Either import Data.Eq import Data.Functor.Utils (Max(..), Min(..), (#.)) import qualified GHC.List as List import Data.Maybe import Data.Monoid import Data.Ord import Data.Proxy import GHC.Arr ( Array(..), elems, numElements, foldlElems, foldrElems, foldlElems', foldrElems', foldl1Elems, foldr1Elems) import GHC.Base hiding ( foldr ) import GHC.Generics import GHC.Num ( Num(..) ) infix 4 `elem`, `notElem` -- | Data structures that can be folded. -- -- For example, given a data type -- -- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) -- -- a suitable instance would be -- -- > instance Foldable Tree where -- > foldMap f Empty = mempty -- > foldMap f (Leaf x) = f x -- > foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r -- -- This is suitable even for abstract types, as the monoid is assumed -- to satisfy the monoid laws. Alternatively, one could define @foldr@: -- -- > instance Foldable Tree where -- > foldr f z Empty = z -- > foldr f z (Leaf x) = f x z -- > foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l -- -- @Foldable@ instances are expected to satisfy the following laws: -- -- > foldr f z t = appEndo (foldMap (Endo . f) t ) z -- -- > foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z -- -- > fold = foldMap id -- -- > length = getSum . foldMap (Sum . const 1) -- -- @sum@, @product@, @maximum@, and @minimum@ should all be essentially -- equivalent to @foldMap@ forms, such as -- -- > sum = getSum . foldMap Sum -- -- but may be less defined. -- -- If the type is also a 'Functor' instance, it should satisfy -- -- > foldMap f = fold . fmap f -- -- which implies that -- -- > foldMap f . fmap g = foldMap (f . g) class Foldable t where {-# MINIMAL foldMap | foldr #-} -- | Combine the elements of a structure using a monoid. fold :: Monoid m => t m -> m fold = foldMap id -- | Map each element of the structure to a monoid, -- and combine the results. foldMap :: Monoid m => (a -> m) -> t a -> m {-# INLINE foldMap #-} -- This INLINE allows more list functions to fuse. See Trac #9848. foldMap f = foldr (mappend . f) mempty -- | Right-associative fold of a structure. -- -- In the case of lists, 'foldr', when applied to a binary operator, a -- starting value (typically the right-identity of the operator), and a -- list, reduces the list using the binary operator, from right to left: -- -- > foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...) -- -- Note that, since the head of the resulting expression is produced by -- an application of the operator to the first element of the list, -- 'foldr' can produce a terminating expression from an infinite list. -- -- For a general 'Foldable' structure this should be semantically identical -- to, -- -- @foldr f z = 'List.foldr' f z . 'toList'@ -- foldr :: (a -> b -> b) -> b -> t a -> b foldr f z t = appEndo (foldMap (Endo #. f) t) z -- | Right-associative fold of a structure, but with strict application of -- the operator. -- foldr' :: (a -> b -> b) -> b -> t a -> b foldr' f z0 xs = foldl f' id xs z0 where f' k x z = k $! f x z -- | Left-associative fold of a structure. -- -- In the case of lists, 'foldl', when applied to a binary -- operator, a starting value (typically the left-identity of the operator), -- and a list, reduces the list using the binary operator, from left to -- right: -- -- > foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn -- -- Note that to produce the outermost application of the operator the -- entire input list must be traversed. This means that 'foldl'' will -- diverge if given an infinite list. -- -- Also note that if you want an efficient left-fold, you probably want to -- use 'foldl'' instead of 'foldl'. The reason for this is that latter does -- not force the "inner" results (e.g. @z `f` x1@ in the above example) -- before applying them to the operator (e.g. to @(`f` x2)@). This results -- in a thunk chain @O(n)@ elements long, which then must be evaluated from -- the outside-in. -- -- For a general 'Foldable' structure this should be semantically identical -- to, -- -- @foldl f z = 'List.foldl' f z . 'toList'@ -- foldl :: (b -> a -> b) -> b -> t a -> b foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z -- There's no point mucking around with coercions here, -- because flip forces us to build a new function anyway. -- | Left-associative fold of a structure but with strict application of -- the operator. -- -- This ensures that each step of the fold is forced to weak head normal -- form before being applied, avoiding the collection of thunks that would -- otherwise occur. This is often what you want to strictly reduce a finite -- list to a single, monolithic result (e.g. 'length'). -- -- For a general 'Foldable' structure this should be semantically identical -- to, -- -- @foldl f z = 'List.foldl'' f z . 'toList'@ -- foldl' :: (b -> a -> b) -> b -> t a -> b foldl' f z0 xs = foldr f' id xs z0 where f' x k z = k $! f z x -- | A variant of 'foldr' that has no base case, -- and thus may only be applied to non-empty structures. -- -- @'foldr1' f = 'List.foldr1' f . 'toList'@ foldr1 :: (a -> a -> a) -> t a -> a foldr1 f xs = fromMaybe (errorWithoutStackTrace "foldr1: empty structure") (foldr mf Nothing xs) where mf x m = Just (case m of Nothing -> x Just y -> f x y) -- | A variant of 'foldl' that has no base case, -- and thus may only be applied to non-empty structures. -- -- @'foldl1' f = 'List.foldl1' f . 'toList'@ foldl1 :: (a -> a -> a) -> t a -> a foldl1 f xs = fromMaybe (errorWithoutStackTrace "foldl1: empty structure") (foldl mf Nothing xs) where mf m y = Just (case m of Nothing -> y Just x -> f x y) -- | List of elements of a structure, from left to right. toList :: t a -> [a] {-# INLINE toList #-} toList t = build (\ c n -> foldr c n t) -- | Test whether the structure is empty. The default implementation is -- optimized for structures that are similar to cons-lists, because there -- is no general way to do better. null :: t a -> Bool null = foldr (\_ _ -> False) True -- | Returns the size/length of a finite structure as an 'Int'. The -- default implementation is optimized for structures that are similar to -- cons-lists, because there is no general way to do better. length :: t a -> Int length = foldl' (\c _ -> c+1) 0 -- | Does the element occur in the structure? elem :: Eq a => a -> t a -> Bool elem = any . (==) -- | The largest element of a non-empty structure. maximum :: forall a . Ord a => t a -> a maximum = fromMaybe (errorWithoutStackTrace "maximum: empty structure") . getMax . foldMap (Max #. (Just :: a -> Maybe a)) -- | The least element of a non-empty structure. minimum :: forall a . Ord a => t a -> a minimum = fromMaybe (errorWithoutStackTrace "minimum: empty structure") . getMin . foldMap (Min #. (Just :: a -> Maybe a)) -- | The 'sum' function computes the sum of the numbers of a structure. sum :: Num a => t a -> a sum = getSum #. foldMap Sum -- | The 'product' function computes the product of the numbers of a -- structure. product :: Num a => t a -> a product = getProduct #. foldMap Product -- instances for Prelude types -- | @since 2.01 instance Foldable Maybe where foldMap = maybe mempty foldr _ z Nothing = z foldr f z (Just x) = f x z foldl _ z Nothing = z foldl f z (Just x) = f z x -- | @since 2.01 instance Foldable [] where elem = List.elem foldl = List.foldl foldl' = List.foldl' foldl1 = List.foldl1 foldr = List.foldr foldr1 = List.foldr1 length = List.length maximum = List.maximum minimum = List.minimum null = List.null product = List.product sum = List.sum toList = id -- | @since 4.9.0.0 instance Foldable NonEmpty where foldr f z ~(a :| as) = f a (List.foldr f z as) foldl f z ~(a :| as) = List.foldl f (f z a) as foldl1 f ~(a :| as) = List.foldl f a as foldMap f ~(a :| as) = f a `mappend` foldMap f as fold ~(m :| ms) = m `mappend` fold ms length (_ :| as) = 1 + List.length as toList ~(a :| as) = a : as -- | @since 4.7.0.0 instance Foldable (Either a) where foldMap _ (Left _) = mempty foldMap f (Right y) = f y foldr _ z (Left _) = z foldr f z (Right y) = f y z length (Left _) = 0 length (Right _) = 1 null = isLeft -- | @since 4.7.0.0 instance Foldable ((,) a) where foldMap f (_, y) = f y foldr f z (_, y) = f y z -- | @since 4.8.0.0 instance Foldable (Array i) where foldr = foldrElems foldl = foldlElems foldl' = foldlElems' foldr' = foldrElems' foldl1 = foldl1Elems foldr1 = foldr1Elems toList = elems length = numElements null a = numElements a == 0 -- | @since 4.7.0.0 instance Foldable Proxy where foldMap _ _ = mempty {-# INLINE foldMap #-} fold _ = mempty {-# INLINE fold #-} foldr _ z _ = z {-# INLINE foldr #-} foldl _ z _ = z {-# INLINE foldl #-} foldl1 _ _ = errorWithoutStackTrace "foldl1: Proxy" foldr1 _ _ = errorWithoutStackTrace "foldr1: Proxy" length _ = 0 null _ = True elem _ _ = False sum _ = 0 product _ = 1 -- | @since 4.8.0.0 instance Foldable Dual where foldMap = coerce elem = (. getDual) #. (==) foldl = coerce foldl' = coerce foldl1 _ = getDual foldr f z (Dual x) = f x z foldr' = foldr foldr1 _ = getDual length _ = 1 maximum = getDual minimum = getDual null _ = False product = getDual sum = getDual toList (Dual x) = [x] -- | @since 4.8.0.0 instance Foldable Sum where foldMap = coerce elem = (. getSum) #. (==) foldl = coerce foldl' = coerce foldl1 _ = getSum foldr f z (Sum x) = f x z foldr' = foldr foldr1 _ = getSum length _ = 1 maximum = getSum minimum = getSum null _ = False product = getSum sum = getSum toList (Sum x) = [x] -- | @since 4.8.0.0 instance Foldable Product where foldMap = coerce elem = (. getProduct) #. (==) foldl = coerce foldl' = coerce foldl1 _ = getProduct foldr f z (Product x) = f x z foldr' = foldr foldr1 _ = getProduct length _ = 1 maximum = getProduct minimum = getProduct null _ = False product = getProduct sum = getProduct toList (Product x) = [x] -- | @since 4.8.0.0 instance Foldable First where foldMap f = foldMap f . getFirst -- | @since 4.8.0.0 instance Foldable Last where foldMap f = foldMap f . getLast -- Instances for GHC.Generics -- | @since 4.9.0.0 instance Foldable U1 where foldMap _ _ = mempty {-# INLINE foldMap #-} fold _ = mempty {-# INLINE fold #-} foldr _ z _ = z {-# INLINE foldr #-} foldl _ z _ = z {-# INLINE foldl #-} foldl1 _ _ = errorWithoutStackTrace "foldl1: U1" foldr1 _ _ = errorWithoutStackTrace "foldr1: U1" length _ = 0 null _ = True elem _ _ = False sum _ = 0 product _ = 1 deriving instance Foldable V1 deriving instance Foldable Par1 deriving instance Foldable f => Foldable (Rec1 f) deriving instance Foldable (K1 i c) deriving instance Foldable f => Foldable (M1 i c f) deriving instance (Foldable f, Foldable g) => Foldable (f :+: g) deriving instance (Foldable f, Foldable g) => Foldable (f :*: g) deriving instance (Foldable f, Foldable g) => Foldable (f :.: g) deriving instance Foldable UAddr deriving instance Foldable UChar deriving instance Foldable UDouble deriving instance Foldable UFloat deriving instance Foldable UInt deriving instance Foldable UWord -- | Monadic fold over the elements of a structure, -- associating to the right, i.e. from right to left. foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b foldrM f z0 xs = foldl f' return xs z0 where f' k x z = f x z >>= k -- | Monadic fold over the elements of a structure, -- associating to the left, i.e. from left to right. foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b foldlM f z0 xs = foldr f' return xs z0 where f' x k z = f z x >>= k -- | Map each element of a structure to an action, evaluate these -- actions from left to right, and ignore the results. For a version -- that doesn't ignore the results see 'Data.Traversable.traverse'. traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () traverse_ f = foldr ((*>) . f) (pure ()) -- | 'for_' is 'traverse_' with its arguments flipped. For a version -- that doesn't ignore the results see 'Data.Traversable.for'. -- -- >>> for_ [1..4] print -- 1 -- 2 -- 3 -- 4 for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () {-# INLINE for_ #-} for_ = flip traverse_ -- | Map each element of a structure to a monadic action, evaluate -- these actions from left to right, and ignore the results. For a -- version that doesn't ignore the results see -- 'Data.Traversable.mapM'. -- -- As of base 4.8.0.0, 'mapM_' is just 'traverse_', specialized to -- 'Monad'. mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () mapM_ f= foldr ((>>) . f) (return ()) -- | 'forM_' is 'mapM_' with its arguments flipped. For a version that -- doesn't ignore the results see 'Data.Traversable.forM'. -- -- As of base 4.8.0.0, 'forM_' is just 'for_', specialized to 'Monad'. forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m () {-# INLINE forM_ #-} forM_ = flip mapM_ -- | Evaluate each action in the structure from left to right, and -- ignore the results. For a version that doesn't ignore the results -- see 'Data.Traversable.sequenceA'. sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () sequenceA_ = foldr (*>) (pure ()) -- | Evaluate each monadic action in the structure from left to right, -- and ignore the results. For a version that doesn't ignore the -- results see 'Data.Traversable.sequence'. -- -- As of base 4.8.0.0, 'sequence_' is just 'sequenceA_', specialized -- to 'Monad'. sequence_ :: (Foldable t, Monad m) => t (m a) -> m () sequence_ = foldr (>>) (return ()) -- | The sum of a collection of actions, generalizing 'concat'. -- -- asum [Just "Hello", Nothing, Just "World"] -- Just "Hello" asum :: (Foldable t, Alternative f) => t (f a) -> f a {-# INLINE asum #-} asum = foldr (<|>) empty -- | The sum of a collection of actions, generalizing 'concat'. -- As of base 4.8.0.0, 'msum' is just 'asum', specialized to 'MonadPlus'. msum :: (Foldable t, MonadPlus m) => t (m a) -> m a {-# INLINE msum #-} msum = asum -- | The concatenation of all the elements of a container of lists. concat :: Foldable t => t [a] -> [a] concat xs = build (\c n -> foldr (\x y -> foldr c y x) n xs) {-# INLINE concat #-} -- | Map a function over all the elements of a container and concatenate -- the resulting lists. concatMap :: Foldable t => (a -> [b]) -> t a -> [b] concatMap f xs = build (\c n -> foldr (\x b -> foldr c b (f x)) n xs) {-# INLINE concatMap #-} -- These use foldr rather than foldMap to avoid repeated concatenation. -- | 'and' returns the conjunction of a container of Bools. For the -- result to be 'True', the container must be finite; 'False', however, -- results from a 'False' value finitely far from the left end. and :: Foldable t => t Bool -> Bool and = getAll #. foldMap All -- | 'or' returns the disjunction of a container of Bools. For the -- result to be 'False', the container must be finite; 'True', however, -- results from a 'True' value finitely far from the left end. or :: Foldable t => t Bool -> Bool or = getAny #. foldMap Any -- | Determines whether any element of the structure satisfies the predicate. any :: Foldable t => (a -> Bool) -> t a -> Bool any p = getAny #. foldMap (Any #. p) -- | Determines whether all elements of the structure satisfy the predicate. all :: Foldable t => (a -> Bool) -> t a -> Bool all p = getAll #. foldMap (All #. p) -- | The largest element of a non-empty structure with respect to the -- given comparison function. -- See Note [maximumBy/minimumBy space usage] maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a maximumBy cmp = foldl1 max' where max' x y = case cmp x y of GT -> x _ -> y -- | The least element of a non-empty structure with respect to the -- given comparison function. -- See Note [maximumBy/minimumBy space usage] minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a minimumBy cmp = foldl1 min' where min' x y = case cmp x y of GT -> y _ -> x -- | 'notElem' is the negation of 'elem'. notElem :: (Foldable t, Eq a) => a -> t a -> Bool notElem x = not . elem x -- | The 'find' function takes a predicate and a structure and returns -- the leftmost element of the structure matching the predicate, or -- 'Nothing' if there is no such element. find :: Foldable t => (a -> Bool) -> t a -> Maybe a find p = getFirst . foldMap (\ x -> First (if p x then Just x else Nothing)) {- Note [maximumBy/minimumBy space usage] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When the type signatures of maximumBy and minimumBy were generalized to work over any Foldable instance (instead of just lists), they were defined using foldr1. This was problematic for space usage, as the semantics of maximumBy and minimumBy essentially require that they examine every element of the data structure. Using foldr1 to examine every element results in space usage proportional to the size of the data structure. For the common case of lists, this could be particularly bad (see Trac #10830). For the common case of lists, switching the implementations of maximumBy and minimumBy to foldl1 solves the issue, as GHC's strictness analysis can then make these functions only use O(1) stack space. It is perhaps not the optimal way to fix this problem, as there are other conceivable data structures (besides lists) which might benefit from specialized implementations for maximumBy and minimumBy (see https://ghc.haskell.org/trac/ghc/ticket/10830#comment:26 for a further discussion). But using foldl1 is at least always better than using foldr1, so GHC has chosen to adopt that approach for now. -}